Greek Mathematical Olympiad - 2005
 (February 12 / 2005)

1. We are given a trapeze $A B C D$ with $A B / / C D, C D=2 A B$ and $D B \perp B C$. If lines DA and CB intersect at point E, prove that triangle CDE is isosceles (modified).
(Junior level)
2. If $f(n)=\frac{2 n+1+\sqrt{n(n+1)}}{\sqrt{n+1}+\sqrt{n}}$ for all positive integers n, find the sum

$$
A=f(1)+f(2)+\ldots+f(400)
$$

(Junior level)
3. Let a circle and A an exterior point of the circle. Determine the points B, C, D on the circle , such that the convex quadrateral $A B C D$ has the maximum area.
(Junior level)
4. Find the non zero integers a, b, c, d with $a>b>c>d$ which are solutions of the system

$$
\left\{\begin{array}{l}
a b+c d=34 \\
a c-b d=19
\end{array}\right.
$$

(Junior level)
5. Find all polynomials $P(x)$ with real coefficients, $P(2)=12$ and

$$
P\left(x^{2}\right)=x^{2}\left(x^{2}+1\right) P(x), \text { for all real values of } x
$$

6. Let the sequence $\left(a_{n}\right), n \in \mathbb{N}^{*}$, with $a_{1}=1$ and

$$
a_{n}=a_{n-1}+\frac{1}{n^{3}} \quad, n=2,3, \ldots \ldots
$$

a) Prove that $a_{n}<\frac{5}{4}$, for every $n=1,2, \ldots \ldots$
b) If ε is a positive real number, find the smallest natural $n_{o}>0$, such that

$$
\left|a_{n+1}-a_{n}\right|<\varepsilon, \text { for all } n>n_{0}
$$

7. Let k a positive integer. If $\left(x_{0}, y_{0}\right)$ is a solution of the equation

$$
\begin{equation*}
x^{3}+y^{3}-2 y\left(x^{2}-x y+y^{2}\right)=k^{2}(x-y) \tag{1}
\end{equation*}
$$

with x_{0}, y_{0} non zero integers, prove that :
a) equation (1) has finite integer solutions (x, y), with $x \neq y$
b) we can find 11 more different integer solutions (X, Y) of (1) with $X \neq Y$ where X, Y are functions of x_{0} and y_{o}
8. Let $x O y$ an (convex) angle and the rays $O x_{1}, O y_{1}$ in it's interior, so that

$$
\angle \mathrm{xOx}_{1}=\angle \mathrm{yOy}_{1}<\frac{1}{3} \angle \mathrm{xOy}
$$

Let K, L be fixed points on $\mathrm{Ox}_{1}, \mathrm{Oy}_{1}$ respectively with $\mathrm{OK}=\mathrm{OL}$. If points A, B move on sides $O x, O y$ respectively and the area of OAKLB is constant(has always the same value), prove that the circumcircle of triangle OAB, as A, B move on Ox, Oy , passes through a constant point, different from O .

